Mechanisms of a Human Skeletal Myotonia Produced by Mutation in the C-Terminus of NaV1.4: Is Ca2+ Regulation Defective?

نویسندگان

  • Subrata Biswas
  • Deborah A. DiSilvestre
  • Peihong Dong
  • Gordon F. Tomaselli
چکیده

Mutations in the cytoplasmic tail (CT) of voltage gated sodium channels cause a spectrum of inherited diseases of cellular excitability, yet to date only one mutation in the CT of the human skeletal muscle voltage gated sodium channel (hNaV1.4F1705I) has been linked to cold aggravated myotonia. The functional effects of altered regulation of hNaV1.4F1705I are incompletely understood. The location of the hNaV1.4F1705I in the CT prompted us to examine the role of Ca(2+) and calmodulin (CaM) regulation in the manifestations of myotonia. To study Na channel related mechanisms of myotonia we exploited the differences in rat and human NaV1.4 channel regulation by Ca(2+) and CaM. hNaV1.4F1705I inactivation gating is Ca(2+)-sensitive compared to wild type hNaV1.4 which is Ca(2+) insensitive and the mutant channel exhibits a depolarizing shift of the V1/2 of inactivation with CaM over expression. In contrast the same mutation in the rNaV1.4 channel background (rNaV1.4F1698I) eliminates Ca(2+) sensitivity of gating without affecting the CaM over expression induced hyperpolarizing shift in steady-state inactivation. The differences in the Ca(2+) sensitivity of gating between wild type and mutant human and rat NaV1.4 channels are in part mediated by a divergence in the amino acid sequence in the EF hand like (EFL) region of the CT. Thus the composition of the EFL region contributes to the species differences in Ca(2+)/CaM regulation of the mutant channels that produce myotonia. The myotonia mutation F1705I slows INa decay in a Ca(2+)-sensitive fashion. The combination of the altered voltage dependence and kinetics of INa decay contribute to the myotonic phenotype and may involve the Ca(2+)-sensing apparatus in the CT of NaV1.4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Missense Mutation in CLCN1 Gene in a Family with Autosomal Recessive Congenital Myotonia

Congenital recessive myotonia is a rare genetic disorder caused by mutations in CLCN1, which codes for the main skeletal muscle chloride channel ClC-1. More than 120 mutations have been found in this gene. The main feature of this disorder is muscle membrane hyperexcitability. Here, we report a 59-year male patient suffering from congenital myotonia. He had transient generalized myotonia, which...

متن کامل

Conservation of Ca2+/Calmodulin Regulation across Na and Ca2+ Channels

Voltage-gated Na and Ca2+ channels comprise distinct ion channel superfamilies, yet the carboxy tails of these channels exhibit high homology, hinting at a long-shared and purposeful module. For different Ca2+ channels, carboxyl-tail interactions with calmodulin do elaborate robust and similar forms of Ca2+ regulation. However, Na channels have only shown subtler Ca2+ modulation that differs am...

متن کامل

Divalent cation-responsive myotonia and muscle paralysis in skeletal muscle sodium channelopathy.

We report a patient with paramyotonia congenita/hyperkalemic periodic paralysis due to Nav1.4 I693T mutation who had worsening of myotonia and muscle weakness in the setting of hypomagnesemia and hypocalcemia with marked recovery after magnesium administration. Computer simulations of the effects of the I693T mutation were introduced in the muscle fiber model by both hyperpolarizing shifts in t...

متن کامل

بررسی جهش در اگزون 8 ژن CLCN1 در بیماران ایرانی مبتلا به میوتونی غیر دیستروفیک

Background: Non-dystrophy myotonias (NDMs) have similar clinical signs of muscle weakness and congenital myotoniais typical example. This disease is caused by mutations in CLCN1 gene. CLCN1 gene has 23 exons and exon 8 is hotspot. Mutations in skeletal muscle chloride channel gene are associated with a group of clinically overlapping diseases by alterations in the excitability of the sarcolemma...

متن کامل

Novel mutations in human and mouse SCN4A implicate AMPK in myotonia and periodic paralysis

Mutations in the skeletal muscle channel (SCN4A), encoding the Nav1.4 voltage-gated sodium channel, are causative of a variety of muscle channelopathies, including non-dystrophic myotonias and periodic paralysis. The effects of many of these mutations on channel function have been characterized both in vitro and in vivo. However, little is known about the consequences of SCN4A mutations downstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013